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Abstract

The objective of the present study was to compare the uptake and killing of Salmonella serovars by murine and avian

macrophage cell lines. We used Salmonella enterica serovars Enteritidis (SE338) and Typhimurium (SR11) for this study.

Uptake of green fluorescent protein-labeled bacteria was measured using flow cytometry. Cell sorting and plating of viable

infected macrophages demonstrated that bacterial clearance was significantly better with J774A.1 compared with HD11

cells. HD11 cells produced significantly higher amounts of nitric oxide (NO) than J774A.1 cells upon infection with SE338

and SR11, whereas J774A.1 cells exhibited greater superoxide production with SR11. Treatment of HD11 cells with

recombinant chicken interferon gamma in the absence of bacteria enhanced NO production but did not induce increased

levels synergistically with bacteria. Interferon treatment did not influence phagocytosis or increase killing by HD11 cells.

Published by Elsevier Ltd.
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1. Introduction

Salmonella enterica are facultative intracellular
bacteria of which serovar Typhimurium (ST) and
serovar Enteritidis (SE) have a broad host range,
including the capacity to cause human infections.
Infection of humans by these organisms usually
occurs by food-borne transmission. Human infec-
tion with SE is primarily caused by consumption of
contaminated raw or partially cooked shell eggs
while ST is implicated in contamination of chicken
e front matter Published by Elsevier Ltd.
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meat and of a variety of other foods [1–6]. When
ingested by humans, SE and ST initially infect
intestinal mucosal cells causing a transient diarrhea
but rarely become systemic. In avian and murine
hosts the infections can become systemic. In the
mouse, this occurs as a result of bacteria translocat-
ing across the mucosa to sub-mucosal tissues
including Peyer’s patch lymphoid structures [7].
There, Salmonellae are taken up by phagocytes
including monocytes and macrophages [8]. As
facultative intracellular pathogens, they are able to
persist within these cells and become disseminated
to spleen, liver and other tissues, as monocytes
circulate in blood and lymphatics [9]. In susceptible
mice, systemic ST infection with a virulent strain
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results in a typhoid-like illness that can result either
in the death of the host or clearance of the infection
with a resulting sterile immunity, usually within 1–3
weeks [10]. The immune response in mice involves
innate, cell-mediated and antibody components
[7,8,10,11]. In chickens infected orally with SE, a
similar colonization of organs occurs and includes
the reproductive organs of hens leading to contam-
ination of shell eggs [12]. In contrast to mice,
colonization of the chicken gastrointestinal tract
and tissues by SE often occurs without signs of
overt clinical symptoms; furthermore, egg produc-
tion of hens is not affected by SE infection [2].
Infection can persist for up to 18 weeks in laying
hens. Experimental infection of chickens with SE
results in both cell-mediated and antibody responses
that are ultimately not effective in clearing the
infection [13,14]. Induction of measurable immune
protection with live, attenuated and heat-killed
vaccines, suggests that in the absence of vaccination,
the immune response has limited effectiveness [15].
This species-specific pathogenesis may be due to a
variety of factors influencing differential host–
pathogen interaction, including differences in inter-
action with components of cell-mediated and innate
immunity including phagocytes, which play a
central role in pathogenesis in both mouse and
chicken. The ability of Salmonellae to survive within
host cells is essential for the establishment of
systemic infection [16]. With respect to the mouse
model, Salmonella pathogenicity island encoded
type III secretion system genes play a major role
in host cell invasion and survival in macrophages in
both ST and SE [17,18]. Activation of macrophages
by inflammatory mediators such as interferon
gamma and the importance of reactive oxygen and
nitric oxide (NO) in killing of Salmonellae by
primary mouse macrophages and macrophage cell
lines, including J774A.1 is well established [7,8,10].
The in vitro interaction of avian phagocytic cells
with S. enterica serovars has more recently been
investigated. The activation by IL-2 of chicken
heterophils, professional phagocytes analogous to
mammalian polymorphonuclear cells, induces IL-8
and IL-18 mRNA following phagocytosis of SE
[19]. Enhanced heterophil activation is associated
with increased resistance and with cytokine mRNA
expression [20]. In studies with the species-specific S.

enterica, serovar Pullorum, splenic macrophages
were found to play a role in persistent infection by
harboring bacteria for 40 weeks after infection [21].
Macrophages from Salmonella-resistant chickens
were also found to kill serovar Gallinarium more
efficiently than macrophages from Salmonella-
susceptible chickens, suggesting an important role
for macrophages in this genetically based resistance
[22]. In a recent study, we investigated the effect of
recombinant chicken interferon-g (rchIFN-g) on the
infection of primary chicken macrophages isolated
from peripheral blood with ST and SE. ST showed
an increased ability to survive in primary macro-
phages and interferon treatment caused increased
cellular necrosis in combination with infection [23].
The ability to conduct these studies was inhibited by
difficulty in obtaining and maintaining consistent
populations of primary macrophages in large
enough numbers. The use of a chicken macrophage
cell line provided a means to overcome this
problem. In previous studies, the avian monocyte–
macrophage cell line HD11 showed increased
bactericidal activity in vitro as well as enhanced
production of cytokines and NO following exposure
to CpG oligodeoxynucleotides [24,25] and was
therefore a candidate for this purpose.

While there have been comparisons of Salmonella

serovars in mouse and human macrophage cell lines
[26] as well as in vivo comparisons in both mouse
and chicken experimental infection [27], no studies
have specifically focused on comparing SE and ST
interaction with mouse and chicken macrophages.
In this study, we have conducted in vitro infection
studies with mouse and chicken macrophage cell
lines focused on cellular measurement of uptake and
survival of ST and SE using flow cytometry and cell
sorting. The use of green fluorescent protein (GFP)-
labeled SE and ST in combination with flow
cytometry has proven to be a valuable approach,
allowing for a more quantitative analysis of the
dynamics of macrophage–bacteria interactions in
vitro [24,28]. NO and superoxide production was
also measured. In addition, the effect of recombi-
nant IFN-g on these parameters in chicken macro-
phages was also assessed. The results will shed light
on the unique features of S. enterica infection in
mice and chickens that dictate the differential
response of mouse and chicken macrophages
following infection.

2. Materials and methods

2.1. Cell lines

The murine monocytic cell line J774 A.1 (Amer-
ican type culture collection, Rockville, MD, USA)
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and HD11 chicken macrophage-like cells [29] were
maintained in RPMI 1640 tissue culture medium
(Hyclone, Logan, UT, USA) supplemented with
10% heat-inactivated (56 1C, 1 h) fetal bovine serum
(FBS) (Hyclone) as previously described [24,28].
For in vitro infection experiments, cells from
overnight culture flasks were washed twice by
centrifugation (500g, 5min) with RPMI 1640 tissue
culture medium with 10% FBS without antibiotics
and re-suspended in the same medium at a
concentration of 5� 105 cells/ml.

2.2. In vitro infection of macrophages

GFP-labeled SE (SE338, phage type 4) and ST
(SR11) used in our study were developed and
maintained as previously described [24,30]. These
strains are infective in mice (SR11) and chickens
(SE338). SE338 was isolated from raw egg impli-
cated in a human infection. Overnight cultures were
set up in Luria broth at 37 1C. Cultures were washed
twice with sterile phosphate buffered saline (PBS)
re-suspended in PBS and adjusted to an OD550 of
0.5. This provided an approximate count of
108CFU/ml. In vitro macrophage infection experi-
ments were carried out as previously described [24].
Bacteria were added to macrophage suspension at
ratio of 50–100 bacteria:1 macrophage. These
suspensions were incubated at 37 1C and 5% CO2

for approximately 1 h in RPMI 1640 with 10% FBS
without antibiotics. After the initial uptake, cells
were washed twice with RPMI 1640 with FBS
containing gentamicin (GIBCO, Grand Island, NY,
USA) at 10 mg/ml and re-suspended in the same
medium. These cells were analyzed for uptake of
fluorescent bacteria by flow cytometry. Bacterial
killing by macrophages was assessed by cell sorting
of the desired number of viable infected macro-
phages as previously described [24,28]. After cell
sorting, the remaining sample was centrifuged and
the supernatant collected and frozen at �20 1C for
NO analysis.

2.3. NO analysis

Aliquots of 50 ml supernatants were mixed with
50 ml Griess reagent (Sigma, St. Louis, MO, USA)
and incubated at room temperature for 10min and
were read in a ELISA plate reader at 550 nm. The
amount of NO produced was calculated by compar-
ing with a standard curve produced by using
0–200 nmoles of NaNO2.
2.4. Superoxide analysis

Superoxide anion (O2
�) production in response to

SE and ST infections was determined as superoxide
dismutase (SOD) inhibitable reduction of ferricyto-
chrome C. Macrophages (J774A.1 and HD11) were
infected with SE or ST, in the presence and absence
of SOD (155 units/ml) (Sigma) for 90min. After the
bacterial uptake, cells were washed and re-sus-
pended in HBSS containing 10% FBS and genta-
micin (10 mg/ml). After washing the cells to remove
non-phagocytosed bacteria, the same amount of
SOD was added to cells that were previously treated
with SOD. Cells (50 ml aliquots) were analyzed for
O2
� immediately after the bacterial uptake and 24 h

post-infection by adding 10 ml cytochrome C

(160 mM) and monitoring the change in absorbance
at 550 nm in a 96-well plate reader. Data are
expressed as nmoles O2

�/106 cells which were
calculated by the molar extinction coefficient of
E550 ¼ 21; 000M�1 cm�1.

2.5. Treatment of macrophages with rchIFN-g

rchIFN-g was produced in transformed COS cells
as previously described [31]. The optimal amount of
rchIFN-g was determined by titration using NO
production and MHC class II expression as end-
points. A 1:50 v/v dilution induced maximal NO
production and MHC class II expression. As a
control, culture supernatant from non-transformed
COS cells was used. HD11 cells were incubated in
the presence of a 1:50 v/v dilution of rchIFN-g or
control supernatant for 18 h, followed by washing
to remove IFN. Cells were then infected with SE or
ST strains as described above.

2.6. Impact of SOD on bacterial uptake and killing

To determine the role of O2
� in bacterial killing,

macrophages were pre-treated with SOD (155 units/
ml) for 2 h. After the bacterial uptake, cells were
washed and re-suspended in RPMI containing the
same concentration of SOD. Aliquots were taken at
baseline and 24 h post-infection to assess bacter-
icidal activity. Data are presented as CFU/200
viable macrophages.

2.7. Statistical analysis

Data pertaining to NO, O2
� and bacterial killing

were analyzed by conducting one-way analysis of
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variance followed by Student–Newman–Keuls test
or t-test. These statistical analyses were done using
Sigma Stat v2.01. Differences between the treatment
groups were considered statistically significant at
Po0:05.

3. Results

3.1. Uptake and killing of SE and ST by J774 and

HD11 cells

Representative flow cytometry histograms of
J774A.1 and HD11 cells infected with GFP-labeled
SE and ST (Fig. 1) illustrate the method used to
determine the percent infected macrophages, and
the mean relative fluorescence intensity of infected
cells at baseline (time 0) and 24 h after infection.
Results of 12 experiments were used to compile
means for these values (Fig. 2). The percentage of
J774A.1 and HD11 cells containing intracellular ST
and SE was similar when exposed at the same MOI
(Fig. 2A). The mean fluorescence intensity, how-
ever, indicated that J774A.1 mouse macrophages
phagocytized more bacteria per cell (po0:05)
(Fig. 2B). The lower mean fluorescence of ST
infected cells is due to the lesser fluorescence
intensity per bacterium of GFP-ST. Comparing
results of lysis and plating of sorted GFP positive
macrophages with the flow cytometry results
indicated that there were major differences in
SE and ST clearance by J774A.1 and HD11 cells
(Fig. 3). Greater numbers of ST, relative to SE, were
recovered from both macrophage lines at baseline
and 24 h. Comparing the two macrophage lines,
significantly fewer SE were recovered from J774A.1
at baseline and 24 h (Po0:05) (Fig. 3). Both SE and
ST colony forming units decreased more between
baseline and 24 h in J774A.1 cells relative to HD11.
Thus, despite the fact that there are more bacteria
per cell in J774A.1, fewer viable bacteria per cell
were recovered, indicating greater bacterial killing
by J774A.1 versus HD11.

3.2. NO and superoxide production by J774 and

HD11 cells in response to SE and ST infection

HD11 cells produced significantly more NO in
response to SE and ST infections than did J774A.1
cells at 24h (po0:05). There was no significant
difference in the amount of NO produced between
SE and ST infections within each macrophage cell line
(Fig. 4A). Superoxide production was significantly
higher in J774A.1 cells 24h after infection with ST.
HD11 showed a significant superoxide increase with
ST as well, but this increase was less than that seen
with J774A.1 and ST (Fig. 4B). SE did not induce
significant increases in superoxide in either cell line.

3.3. Effect of rchIFN-g on HD11–salmonella

interactions

The less effective anti-bacterial response of HD11,
relative to J774A.1, led to an investigation of the effect
of rchIFN-g on phagocytosis, bactericidal activity and
NO production in HD11. Incubation with rchIFN-g
for 18h resulted in increased granularity (as indicated
by side light scattering, data not shown) characteristic
of activated macrophages. Macrophages were washed
to remove rchIFN-g and infected with SE or ST. Non-
infected control cultures were also included. Non-
infected control cultures that had been incubated with
rchIFN-g showed an increase in NO production
relative to control IFN-g supernatants at 24h indicat-
ing the activating effects of rchIFN-g (Fig. 5). NO levels
in culture supernatants from both SE and ST-infected
HD11 cells were greatly increased above non-infected
cells, whether or not they had been activated by
rchIFN-g (Fig. 5). rchIFN-g did not result in a
significant increase in phagocytosis of either SE or ST
at baseline as determined by flow cytometry (data not
shown). Bacterial recovery at baseline and 24h reflected
this finding with no significant difference between
rchIFN-g-treated HD11 and controls (Fig. 6). Since
there was no significant effect of rchIFN-g on killing of
bacteria, its effect on superoxide production was not
determined.

3.4. Effect of SOD on Salmonella– macrophage

interactions

Because ST infection induced superoxide produc-
tion, we investigated the effects of SOD on
bactericidal activity of J774A.1 and HD11. SOD
had no effect on survival of SE in either macrophage
cell line (Fig. 7). SOD treatment, however, resulted in
increased survival of ST in J774A.1 cells at 24h.
SOD had no effect on survival of ST in HD11 cells.

4. Discussion

In this study, we employed an approach similar to
the one used to investigate the interactions of mouse
and human macrophage cell lines with Salmonella

typhi and ST [26]. The rationale for this approach
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Fig. 1. Phagocytosis of GFP-labeled Salmonella enterica serovar Enteritidis (A,C,E,G) and Salmonella enterica serovar Typhimurium

(B,D,F,H) by J774A.1 (A–D) and HD11 (E–G) macrophage cell lines as measured by flow cytometry. The X-axis of each histogram

represents intensity of GFP fluorescence (log scale), the Y-axis represents cell number. Analysis for each cell line and serovar was done at 0

(baseline) and 24 h after infection. The percentage of cells within the positive region (M1) is shown along with the mean fluorescence

intensity for positive cells.

U.S. Babu et al. / Developmental and Comparative Immunology 30 (2006) 942–953946
lies in the importance of macrophages in resistance
to infection in vivo, as demonstrated in the
mouse model with ST and SE [7,8,10]. Facultative
intracellular bacteria such as Salmonella are capable
of surviving within bacterially modified macrophage
spacious vacuoles [32]. The ability of virulent
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Fig. 2. (A) Percentage of J774A.1 and HD11 cells infected with

GFP-labeled Salmonella enterica serovar Enteritidis (SE) or

Salmonella enterica serovar Typhimurium (ST) at baseline. Each

bar represents mean7SEM for 6–12 independent experiments.

Percent infected cells was determined by analysis of 5000 viable

cells in each experiment. No significant differences were observed.

(B) Mean fluorescence intensity of J774A.1 and HD11 cells

infected with GFP-labeled Salmonella enterica serovar Enteritidis

(SE) or Salmonella enterica ST at baseline. Each bar represents

mean7SEM for 6–12 independent experiments. Mean fluores-

cence is based on analysis of 5000 viable cells in each experiment.

Different letters on the bars indicate a significant difference

between J774 A.1 and HD11 cells at po0:05.
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Fig. 3. Salmonella enterica serovar Enteritidis (SE) (A) and

Salmonella enterica serovar Typhimurium (ST) (B) survival in

J774 and HD11 cells at baseline (0H) and 24 h post-infection.

Each bar represents mean7SEM for 6–12 independent experi-

ments and each data point is an average of triplicates. Data are

presented as CFU/200 viable infected macrophages. Different

letters on the bars indicate a significant difference between J774

A.1 and HD11 cells at 0 and/or 24 h (po0:05).
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Salmonella to cause systemic infection in mice is
dependent upon this capability [33]. A type III
secretion system encoded by Salmonella pathogeni-
city island 2 (SPI 2) is essential for evasion of
reactive oxygen species within phagosomes [34,35].
Through antigen processing and the release of
soluble inflammatory mediators, macrophages are
also involved in induction of the adaptive immune
response and, when activated by cytokines, are
instrumental in clearing of the infection in mice
[36,37]. The role of macrophages in S. enterica

infection of chickens is not as clearly defined, and
may be different, given the fact that experimental
infection in laying hens can persist for many weeks,
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with little overt harm to the host [2,30]. In contrast,
the course of infection with virulent salmonellae in
susceptible mice may be more rapid, resulting in
either clearance of the infection or death of the host
[10,38,39].

In genetically resistant mice, the occurrence of a
persistent carrier-like infection in macrophages
found in mesenteric lymph nodes, has recently been
described [40]. Persistence of S. enterica serovar
Pullorum in chickens is also associated with survival
within splenic macrophages [21]. Primary macro-
phages isolated from chickens genetically resistant
to S. enterica demonstrated increased respiratory
burst in response to and increased killing of serovar
Gallinarum versus macrophages from a susceptible
strain, suggesting that macrophage function played
a significant role in the resistant phenotype [22].
These same studies indicted that killing of serovars
Typhimurium and Enteritidis was not significantly
different between resistant and susceptible primary
macrophages, nor was the respiratory burst in
macrophages from adult birds.

We have recently reported results of similar
studies conducted with normal primary macro-
phages isolated from adult chicken peripheral blood
[23]. Those studies investigated parameters similar
to the present work, including determination of
differences between ST and SE in their interactions
with primary macrophages, and the effects of
rchIFN-g. Similar to the current results with
HD11 cells, there was no difference in phagocytosis
between ST and SE, and rchIFN-g did not affect
phagocytosis. We also found that, as in the current
study, there was enhanced survival of ST versus SE
in primary macrophages. In contrast to HD11,
rchIFN-g increased bactericidal activity of primary
macrophages, and NO production was enhanced in
infected cells 24 h after treatment with rchIFN-g.
This comparison suggests that there are both
similarities and differences between the responses
of HD11 and primary macrophages. There may be
questions regarding the in vivo relevance of data
obtained with transformed cells such as HD11;
however, significant problems also exist with
isolated primary cells. These problems revolve
around obtaining sufficient numbers of uniform,
viable cells that are consistent between lots. Indeed,
as we and others have reported [22,23], viability of
primary macrophages declines significantly within
24 h, even in non-infected cells. With respect to in
vivo relevance, results that are similar in primary
macrophages and tissue culture lines are probably
most significant. The current studies were directed
at further investigating those differences and draw-
ing comparisons with the mouse model using
macrophage cell lines from chickens and mice,
where larger numbers of highly uniform cells that
remain viable over time could be obtained.

Although flow cytometry data and the colony
counts from sorted infected cells both indicated that
SE and ST were cleared more efficiently by mouse
J774A.1 cells than by avian HD11 cells, colony
counts may have understated the difference. Com-
pared with HD11, the colony counts were lower in
J774A.1 cells at baseline with SE and higher with
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ST. In the absence of flow cytometry analysis, the
baseline colony counts might be interpreted as
indicating less infection of J774A.1 by SE; however,
flow cytometry indicated that the percent of
SE–infected cells in these cell lines was similar.
The reduced SE colony counts at 0 h in J774A.1 are
indicative of more dynamic bactericidal activity,
relative to HD11. Further amplifying this effect, the
mean fluorescence per macrophage at 0 h was also
higher in J774A.1, indicating phagocytosis and
killing of more bacteria/cell on average. With
respect to ST, higher colony counts in both cell
lines at 0 h indicated a greater resistance to
macrophage bactericidal activity by ST. The higher
recovery of ST versus SE at 24 h confirmed this
trend. If these in vitro interactions reflect events in
vivo, then increased survival of S. enterica within
avian macrophages may allow for extensive dis-
semination and long-term colonization of chicken
tissues, including ovaries, which would have im-
plications for egg contamination.

Attempts to augment Salmonella killing by HD11
using rchIFN-g activation did not significantly
enhance phagocytosis or killing of ST or SE.
rchIFN-g induced significant NO production in
non-infected HD11 cells and also resulted in
increased cell granularity based on side light scatter
as determined by flow cytometry, indicating that the
cells responded to rchIFN-g treatment based on
these two parameters. However, there was no
increase in NO production above levels induced by
ST and SE alone in the presence of control IFN-g,
indicating the response to rchIFN-g and the
response to bacteria are not synergistic at the levels
tested. As reported from gene expression studies in
resistant and susceptible chickens infected with SE,
the IFN-g gene was expressed at lower levels in
susceptible birds, suggesting a possible role for this
cytokine in maintenance of the carrier state in
resistant birds [41] possibly through a macrophage-
dependent pathway. Similarly, our previous studies
with primary peripheral blood macrophages [23]
indicate that IFN-g treatment increases killing of SE
and ST. This suggests that the response of HD11 to
IFN-g does not replicate that of primary macro-
phages with respect to enhanced bactericidal activ-
ity. A more definitive assessment of the role of IFN-
g in vivo could be accomplished by anti-IFN-g
inactivation, in a manner analogous to studies in the
mouse [40].

Well known and very efficient mechanisms for
killing of intracellular bacteria exist in the mouse
J774A.1 cell line, including, delivery of reactive
oxygen species [42] and acidification of phagosomes
[43]. Less is known about these and other bacterial
killing mechanisms in chicken macrophage cell lines
such as HD11; however, the intracellular killing of
ST and SE reported here appears to be less effective
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than in mouse macrophages. Induction of NO
production appears to be more robust in HD11
than J774A.1, while superoxide production is more
pronounced in J774A.1. This may indicate that
superoxide production is a more bactericidal me-
chanism for killing of Salmonella, especially ST, in
these cell lines. While SE and ST were equal in their
ability to induce NO in both cell lines, only ST
induced a significant superoxide response. Similar to
our results, stimulation of oxidative burst by PMA
and Zymosan has been reported to be greater in
J774A.1 than HD11 [44]. In the same study, wide
variation was found among Salmonella serovars in
their ability to induce superoxide, with ST among
the most potent; however, no SE strains were
studied. In our study, superoxide was assessed by
SOD-inhibitable cytochrome C reduction, which is
an extracellular measure of this anion reflecting the
activity of the plasma membrane NADPH oxidase
[45]. Chadfield and Olsen were able to detect
chemiluminescence by J774A.1 and HD11 cells in
response to Salmonella serovars using lucigenin but
not luminol as the probe [44]. It is known that
Lucigenin cannot enter the cell, and therefore it
reacts with the reactive oxygen in the extracellular
environment whereas, luminol can enter the cells
and help measure the intracellular production of
reactive oxygen species. Thus, from our studies and
those reported by Chadfield and Olsen, it appears
that the respiratory burst induced by Salmonella

serovars in both J774 and HD11 cell lines may be
mediated extracellularly.

We observed significantly more superoxide in-
duction in response to ST at 24 h post-infection
compared with baseline time point, especially
among J774 cells. Similarly, mouse peritoneal
macrophages have been shown to produce 2.7-fold
greater superoxide at 24 h compared to 2 h post-
infection with Mycobacterium tuberculosis [46]. The
kinetics of superoxide production appear to depend
on the source of macrophages, type of stimulating
agent and the sensitivity of the assay used to
measure the reactive oxygen species.

In parallel to the increased superoxide production
by J774A.1 cells in response to ST, SOD treatment
significantly affected killing of ST by these cells, but
not HD11, and had no effect on SE killing by either
macrophage line. This is consistent with the en-
hanced induction of superoxide by ST in J774A.1.
Similar to our observations, others have reported
increased Salmonella recovery from murine hepato-
cytes that were treated with SOD [47]. Importance of
reactive oxygen species in Salmonella infections is
further confirmed by the attenuation of virulence of
Salmonella choleraesuis and ST by SODmutants [48].
In the case of ST, the SPI-2 encoded ability to evade
NADPH oxidase-mediated killing is an important
virulence factor. The situation with SE is less clear.
Even though virulent SE possesses SPI-2 genes, SE
appears to be less efficient in induction of the
superoxide response. As in our study, SE killing by
mouse peritoneal macrophages was shown to be
unaffected by SOD or catalase enzymes [49]. It has
also been reported that chicken heterophils respond
to SE with a relatively weak superoxide response
compared to other serovars [50]. Reactive oxygen is
an important mediator of tissue damage and
inflammation in vivo. This could be related to the
relatively weak inflammatory response to SE in
chickens [14,51] which could account for a more
benign, long-term relationship of SE in the avian
host allowing for colonization of tissues including
ovaries and resulting in egg contamination.
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